

Upland Catchment Liming in Mooseland, NS

Caitlin McCavour

Supervisors: Dr. Shannon Sterling, Dr. Kevin Keys, Dr. Edmund Halfyard May 3, 2019

Project Overview

- Helicopter liming trial for remediation of ecosystems impacted by acid deposition
- Background (Why?)
- Objectives (What?)
- Methods/ Plot Design (How?)
- Expected results
- Preliminary results
- Significance
- Timeline (When?)

Problem

- Lingering effects from acid deposition has led to slow ecosystem recovery of
 - Soil
 - Forests
 - Aquatic systems

Acid Deposition

- "Acid rain" crisis in 1970
- 1990 Policy
 - Clean Air Act
 - Reduced emissions

Soil Acidification

- 1. Decreased pH
- 2. Leaching of essential nutrients such as calcium (Ca), magnesium (Mg), and potassium (K)
- 3. Mobilization of toxic aluminum (Al)

Acid Deposition: Sulfate

Have reductions in emissions been enough to allow forests to recover?

Liming as a Soil Amendment

- Commonly used in agriculture
- Dolomitic limestone
- The application of a Ca/Mg carbonate amendment to deacidify soil through proton buffering

$$CaMg(CO_3)_2 + 2H^+ \rightarrow Ca^{2+} + Mg^{2+} + 2HCO_3^-$$

Liming as a Soil Amendment

- Lime has been used in many areas of the world to help restore damaged ecosystems
- Direct stream liming is currently being done is Nova Scotia
- The effects of liming are variable depending on site conditions
 - Naturally acidic soils
 - Acid sensitive species (sugar maple)
- Potential down stream effects

Objectives

To set-up and monitor a long-term liming trial in Mooseland, NS to assess whether it is an effective ecosystem restoration tool.

- Long-term RQ: How does this forest and other ecosystems respond to liming?
- Short-term RQ: What is the short-term effects of dolomitic limestone application on forest floor, mineral soil and foliar nutritional status?

Location (Why Otter Ponds?)

- Both Softwood and Hardwood Plots
- Sugar maple and red spruce
- Soils with low base saturation
- Near lime site
- Associated with West River liming project

Experimental Design

- Hardwood Control
- ! Softwood Control
- ! Hardwood Treatment
- ! Softwood Treatment
- Gazebo

Treatment: Dolomite $(CaMg(CO_3)_2)$

October 2018

Data Collection (Growth Plots)

- Species
- Height
- DBH
- Class
- Tree health
 - Crown health
 - Defects
- Regeneration
- Forest floor analysis

(Korhonen and Keikkinen, 2009; Zarnoch et al, 2004; NSDNR, 2006)

Sample Collection

Sample Collection

- Horizons identified and measured
- Hardwood
 - F
 - Bf1
 - Bf2
- Softwood
 - F
 - F/H transition
 - Bf1
 - Bf2

Laboratory Analysis

Plant Tissue

- Total C/N/S
- Total Ca/Mg/K/Na/P/AI/Mn

Soil (forest floor + mineral soil)

- pH
- Base cation concentrations
- Total C/N/S
- Exchangeable NH₄⁺ and NO₃⁻
- Exchangeable acidity and Al³⁺
- Texture

Preliminary Data

- What has been collected?
 - First year samples
 - Waiting get data back from lab
 - DBH
 - Species
 - First year regeneration

Species Composition

Species Composition

Regeneration

Ground Vegetation

Soil Sampling

SWT 5

SWC 1

HWT 6

HWC 1

Expected Results

- Short-term
 - Potential increase in forest floor and mineral soil
 - pH
 - BS
 - CEC
 - Ca, Mg
 - Potential decrease in soil exchangeable acidity
 - Nutrient ratios
 - Al: Ca/Mg decrease
 - Increases in Ca/Mg/K (Ca:K antagonism)
 - Decrease in Al, Mn

- Long-term
 - Tree growth
 - Tree health
 - Regeneration
 - Mineral soil chemical analysis
 - Forest floor morphology and chemical analysis
 - Tree tissue chemistry

Timeline

- May 2019-Oct 2019
 - Year 2 of sample and data collection
- Oct 2019-Apr 2020
 - Data analysis and writing
- Summer/Fall 2021
 - Soil and vegetation sampling
- Summer/Fall 2023+
 - Soil/ Vegetation sampling

Significance

- Mitigation of acid deposition effects on forest health and productivity
 - Potential for use in forestry
- Trickle-down effect to streams and other ecosystems
 - Improve forest and stream habitats for acid sensitive species

Thank You Questions?

DBH

Data Collection (FF)

- Depth
- Bulk density
- Morphology

Sample Collection

Site	# of Plots	Plot Radius	Trees Per	Foliage Samples	Bark Samples	Wood Samples	Vegetation Samples	Total Tissue	Mineral Soil	Forest Floor	Total Soil	Total Samples
	. 10 10	(m)	Plot					Sample	Samples	Samples	Samples	Per Plot
								-	-	(Outside	(Outside	
										Plots)	Plots)	
HWC	6	11.28	401	48	24	24	12	108	12	6	18	126
HWT	6	11.28	319	48	24	24	12	108	12	6	18	126
SWC	5	10.3	259	10	10	10	10	40	10	10	20	60
SWT	5	10.3	274	10	10	10	10	40	10	10	20	60
Total	N/A	N/A	1253	116	68	68	44	296	44	32	76	372

Impacts of Liming (Short-term)

Impacts of Liming (Long-term)

